No podía cerrar el año sin un pequeño homenaje a Blaise Pascal que nació hace 400 años. Principalmente porque es una de las grandes figuras que han sabido combinar ciencia y fe; en este caso concreto matemáticas y teología. Bueno y para ser sincera, también puede que se añada una pizca de chauvinismo…
En una clase del curso pasado estaba hablándoles a los alumnos del voluntarismo y de la capacidad de aceptar las propias limitaciones. Les reconocí que una de mis espinas clavadas es haber sido tan mala estudiante en matemáticas (eso y no sacarme el carné de conducir). Cuál fue mi sorpresa cuando casi toda la clase me aconsejó volver a estudiar esta asignatura pendiente, porque según ellos ¡todavía estaba a tiempo! Lo cierto es que en mi época de colegio no entendía cuál era el “sentido” de las mates. Con la excusa de ser de letras, me desentendí del tema. Mucho más adelante y gracias a la filosofía me interesé cada vez más por la relación que existe entre ambas disciplinas.
La famosa apuesta de Pascal es un nexo entre la teología y lo que hoy se llama la teoría de los juegos. Esta teoría fue formulada, entre otros, por John von Newmann. El matemático, de hecho, estudió a Pascal con detalle y se convirtió al catolicismo al final de su vida. ¿Correlación o causalidad? No se sabe a ciencia cierta… En fin, la propuesta celebre se enuncia de la siguiente manera:
“Usted tiene dos cosas que perder: la verdad y el bien, y dos cosas que comprometer: su razón y su voluntad, su conocimiento y su bienaventuranza; y su naturaleza posee dos cosas de las que debe huir: el error y la miseria. Su razón no resulta más perjudicada al elegir la una o la otra, puesto que es necesario elegir. Ésta es una cuestión vacía. Pero ¿su bienaventuranza? Vamos a sopesar la ganancia y la pérdida al elegir cruz (de cara o cruz) acerca del hecho de que Dios existe. Tomemos en consideración estos dos casos: si gana, lo gana todo; si pierde, no pierde nada. Apueste a que existe sin dudar.”
Blaise Pascal (1670). Pensamientos. III, §233
Obviamente no niego que esta formulación podría asemejarse a un oportunismo religioso y que la fe, para ser auténtica, no puede ser otra cosa que un encuentro personal con Dios. Pero lo fascinante es ver de qué manera las matemáticas son una vía para explorar cuestiones teológicas.
El teorema de la incompletitud de Gödel es otro ejemplo de ello. Consiste en que hay teorías matemáticas que no pueden ser a la vez consistentes y completas. Es decir, hay enunciados que son verdaderos pero no demostrables. Es asombroso que gracias a un teorema se llegue a la conclusión de que justamente no se puede demostrar todo. Podría ser un buen enfoque de estudio en el ámbito de la inteligencia artificial para reflexionar sobre la capacidad de los algoritmos para plasmar o no cualquier dimensión humana.
Ojalá seamos más conscientes de lo absurdo de este cisma en la capacidad intelectual humana. Es cierto que cada vez más las profesiones científicas integran una formación en humanidades. Sin embargo, pocas veces se hace hincapié en que nosotros, los humanistas, necesitaríamos también una formación científica sólida.